A Metamodel Approach to Model Driven Service Development

Yngve Lamo¹, Adrian Rutle²

¹Faculty of Engineering, Bergen University College, Norway

²St. Francis Xavier University, Canada

4 May 2012 AWOSS 2012, Halifax, Canada

Introduction and Motivation

Model Driven Service Generation

Presenter

- Name: Yngve Lamo
- Bergen University College, Norway
- James Chair, visiting professor at St. FX University, Antigonish, Canada
- Background in formal methods
- Currently working on foundations of model driven software engineering

Introduction

- Norwegian economy is based on:
 - Natural resources, oil and gas, fishing (fish farming), hydro electric power, ...
 - Shipping: an important industry with long traditions in Norway
- Norwegian oil and gas production
 - · Offshore production in heavy weather conditions
 - Supply and service industry: mainly done by Norwegian companies
- Safety is highly important
 - · Need for training to handle extreme conditions
 - Use of offshore training simulators

Training simulators

- Offshore Simulator Centre (OSC): a Norwegian company which:
 - Delivers offshore simulators
 - Develops training concepts
 - Aims to increase safety for personnel involved in demanding offshore operations
 - See http://offsim.no
- MUMS project
 - Model Driven Development of Maritime Simulators
 - Incubation project founded by the Research Council of Norway
 - Cooperation between industry (OSC, RUnit), and University Colleges (HiALS, HiB)

Anchor handling

- The process of placing oil rigs in its right position
- Considered the most dangerous offshore operation

Problem Description

- Offshore simulators should be as realistic as possible, i.e. the crew should get the feeling of working on their own boat
- If a minor detail on a ship is changed the behavior of the ship may be completely different and
- The simulator code needs to be reimplemented
 - Repeated coding of low level details
 - Need to do language specific development (float, int,...)
- Our proposal is to use model driven engineering combined with service orientation to tackle the problem

Solution

- 1. Design domain specific language for the maritime domain
 - Simulator developers can work with domain concepts instead of programming language concepts
- 2. Components as services:
 - Loose coupling between components
 - Isolate components in specific services
 - SMODL language http://smodl.org, language for model driven development of services
- 3. Code generation
 - Automate the development of simulator code
 - Challenge to automate code for physical behavior of the ship
 - Especially for the differential equation solvers

Introduction and Motivation

Summary and Future Work

Introduction and Motivation

Model Driven Service Generation

DSML and Metamodels

- Domain Specific (modelling) Languages (DSMLs) are (modelling) languages made for a specific domain
- DSMLs are specified by metamodels:
 - The domain specific types
 - Domain specific constraints that the models need to fulfill
- Diagram Predicate Framework (DPF) is a formal diagrammatic approach to MDE, http://dpf.hib.no
- DPF is used to construct a modeling hierarchy for part of the offshore domain

DSML for propulsor system

Approach

Deafult metamodel \mathfrak{S}_3 in DPF

• DPF's default metamodel \mathfrak{S}_3 consisting of Node and Arrow

Propulsor metamodel \mathfrak{S}_2 typed by \mathfrak{S}_3

Propulsor model \mathfrak{S}_1 typed by \mathfrak{S}_2

Service model transformed from \mathfrak{S}_1

Introduction and Motivation

Summary and Future Work

Introduction and Motivation

Model Driven Service Generation

- We have presented a metamodel approach to model driven service development for an offshore simulator
- The flow of this process is:
 - 1. Construct a DPF modelling hierarchy for the offshore domain
 - 2. Transform domain models to internal DPF-SMODL models
 - 3. Transform DPF-SMODL models to SMODL models
 - 4. Generate services from the SMODL models
 - 5. Run the services in the simulator
- In the future we will:
 - Construct a complete DSML for the offshore simulation domain
 - Automate services generation from domain specific models
 - A major challenge will be to model and generate software for physical behavior (wind, sea,...)
 - Improve the visual syntax of the model editor

Introduction and Motivation

Model Driven Service Generation

Summary and Future Work

Thanks for your attention

Questions?

