
Generalized Sketches for Model-driven Development

Adrian Rutle

Bergen University College, p.b. 7030, 5020 Bergen, aru@hib.no

Abstract. The diversity and heterogeneity of modeling languages make the needs for formal

model speci�cations and automatic model integration and transformation mechanisms more

relevant than ever. These mechanisms are the corner stones in Model-driven Development,

which is a natural evolutionary step in raising the abstraction level of programming languages.

In this talk, we propose a generic formalism, Generalized Sketches, for specifying modeling

languages and their transformations.

1 Model-driven Development (MDD)

MDD is a software development process in which modeling, transformations and automatization
of model transformations are important issues. In MDD, an application is built by working at the
model level. The process starts by specifying an abstract and formal (diagrammatic) model which is
independent of the application's platform, i.e. the implementation technology, design, programming
language ... etc. This kind of model is referred to as Platform Independent Model (PIM) [1]. In
PIM, one can specify the business logic of the application without restriction to a special system
design.

The next step in MDD consists of specifying a transformation for transforming the PIM into a
(set of) Platform Speci�c Model(s) (PSM). PSMs are also formal models, but they are restricted
to a speci�c implementation technology and programming language; like OO-design or relational
schemes.

The last step considers transforming the PSMs to application code. There are many tools that
support this step, but existing tools only allow developers to choose among a prede�ned set of
transformation de�nitions, for example, transforming UML class diagrams to Java, C++, SQL
code ...etc.

The challenge in MDD is in �nding a formalism for specifying the models and choosing mecha-
nisms for de�nition of (and automatically execution of) transformations between those models.

2 Generalized Sketches (GS)

GS is a graph-based speci�cation format that borrows its main ideas from both categorical and
�rst-order logic, and adapts them to software engineering needs [2]. The claim behind GS is that
any diagrammatic speci�cation technique in software engineering can be seen as a speci�c instance
of the GS speci�cation pattern. GS is a pattern, i.e. generic, in the sense that we can instantiate
this pattern by a signature that corresponds to a speci�c speci�cation technique, like UML class
diagrams, ER diagrams or XML. A signature is an abstract structure consisting of a collection (or
a graph) of predicate symbols with a mapping that assigns a shape (or an arity) to each predicate
symbol. A Σ−sketch is a graph with a set of diagrams labeled with predicates from the signature Σ



[3]. Diagrams drawn using a speci�c speci�cation technique, will appear as a (possibly ambiguous)
visualization of a sketch which is parameterized by the corresponding signature Σ.

Thus we claim that GS can be used as a standard notation for representing both the syntax
and the semantics of diagrammatic speci�cation languages, as the syntax and in most cases also
the semantics of GS is mathematically well-de�ned and unambiguous.

3 Generalized Sketches and MDD

As mentioned above, GS can be used to specify modeling languages and transformations between
them. Since GS is a generic speci�cation format, it can be used to specify PIMs, PSMs and the
transformations between them. Also by regarding programming languages as modeling languages,
one can use the following generic mechanism for transformation between PIMs, PSMs and code.

ModelsM that are speci�ed by a given modeling languageML must conform to the metamodel
MM ofML.MM is considered as a speci�cation technique which corresponds to a (graphical) sig-
nature ΣML in GS, i.e.MM ∼= ΣML [4]. Having abstract de�nitions of signatures (or metamodels,)
say MM1 and MM2, a relationship or transformation between them can be de�ned as a morphism
rel : MM2 → MM1 from the target metamodel MM2 to the source metamodel MM1 (see the
�gure.) Then any model M1 conforming to (i.e. which is an instance of) MM1 can be transformed
automatically to a model M2 conforming to MM2 by computing the pullback (M2, i2, rel

*) of the
sink (MM1, i1, rel) [5]. The underlying category of the models and metamodels is GRAPH and
thus the pullback exists. The application of the pullback construction opens for automatization of
the transformation as it's needed by MDD [6].

M1

i1

��

M2
rel*oo

i2

��
MM1 MM2

reloo

4 Tools

By developing tools that support GS as a generic pattern for specifying and developing diagram-
matic speci�cation techniques we can prove and exploit the practical value of GS in all aspects
of (meta)modeling and MDD from transformation and integration to decomposition and code-
generation.

The transformation de�nition in most existing transformation tools is composed of a set of
transformation rules that de�ne how elements or constructs from a source model can be transformed
to a target model [1]. These rules are restricted to element-wise transformations and in the best
case to binary relations between elements. While in the GS methodology, a transformation is a
morphism capable of transforming structures and relationships spanning over many (meta)model
elements. Other drawbacks of the methodologies used today are that transformation rules are only
based on heuristics �they must be de�ned and hard-coded for each two metamodels, and you are
not guarantied the existence of compositionality and associativity between rules.

Our tool will be used to design signatures corresponding to existing speci�cation techniques,
like UML class diagrams and ER diagrams. Designing signatures for existing modeling languages
(the so-called �sketching� or �formalizing� in [3]) involves exhausting exploration of the syntax and



semantics of those languages to �nd the adequate set of predicates; like total, partial, jointly mono,
disjoint-cover ... etc needed to express all properties that can be expressed by them. Then, preferred
graphical notations for the predicates can be chosen. (This step corresponds to the speci�cation
of MM1 and MM2 in the �gure.) Diagrams, i.e. visualizations of sketches, can be drawn using the
signatures/speci�cation techniques (this step corresponds to the speci�cation of M1 and M2 in the
�gure.) The tool will also support de�nition of transformation between (meta)models and automatic
construction of pullback.

References

1. Anneke G. Kleppe, Jos Warmer, and Wim Bast. MDA Explained: The Model Driven Architecture:

Practice and Promise. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.

2. Zinovy Diskin and Uwe Wolter. A Diagrammatic Logic for Object-Oriented Visual Modeling. In ACCAT

2007: 2nd Workshop on Applied and Computational Category Theory, volume 203 of ENTCS, pages 19�

41, Amsterdam, The Netherlands, 2008. Elsevier Science Publishers B. V.

3. Zinovy Diskin. Generalized sketches as an algebraic graph-based framework for semantic modeling and

database design. Technical Report 9701, University of Latvia, Riga, Latvia, August 1997.

4. Uwe Wolter and Zinovy Diskin. The Next Hundred Diagrammatic Speci�cation Techniques � An In-

troduction to Generalized Sketches. Technical Report 358, Department of Informatics, University of

Bergen, Norway, July 2007.

5. Zinovy Diskin. Model Transformation via Pull-backs: Algebra vs. Heuristics. Technical Report 521,

School of Computing, Queen's University, Kingston, Canada, September 2006.

6. Zinovy Diskin and Jürgen Dingel. A metamodel Independent Framework for Model Transformation:

Towards Generic Model Management Patterns in Reverse Engineering. In ATEM 2006: 3rd International

Workshop on Metamodels, Schemas, Grammars, and Ontologies for Reverse Engineering, 2006.


