
Introduction Diagram Predicate Framework Correctness of Model Transformation

Correctness of Constraint-Aware Model
Transformations

Xiaoliang Wang, Yngve Lamo

Department of Computer Engineering, Bergen University College, Norway

27 October 2011
Nordic Workshop on Programming Theory, Västerås, Sweden

Introduction Diagram Predicate Framework Correctness of Model Transformation

Outline

Introduction

Diagram Predicate Framework

Correctness of Model Transformation

Introduction Diagram Predicate Framework Correctness of Model Transformation

Model-Driven Engineering (MDE)

• In model-driven engineering, models are
• Primary artefacts
• Used to specify, generate and maintain code
• Manipulated by model transformations

• Advantage
• Productivity is greatly improved
• Consistence between models is assured

Introduction Diagram Predicate Framework Correctness of Model Transformation

Model Transformation

• Model transformation is automatic
• Platform Independent Model (PIM) → Platform Specific

Model (PSM)
• Model → executable code
• Model refactoring

• Improves the software development productivity and quality

Introduction Diagram Predicate Framework Correctness of Model Transformation

Model Transformation

• Model transformations:
• Source models → Target models

• Model transformation rules:
• Source metamodel ↔ Target metamodel

• Given a source model and a set of model transformation rules,
we use the following transformation process:

• Find a suitable rule
• Change on the source model according to the rule
• Generate a new model which satisfies the target metamodel
• Repeat the process until there is no suitable rule found

Introduction Diagram Predicate Framework Correctness of Model Transformation

Correctness of Model Transformation

• Software programs need validation before deployment

Introduction Diagram Predicate Framework Correctness of Model Transformation

Correctness of Model Transformation

• Model transformations must also be reliable

Introduction Diagram Predicate Framework Correctness of Model Transformation

Correctness of Model Transformation

• Model transformations must also be reliable

Introduction Diagram Predicate Framework Correctness of Model Transformation

Correctness of Model Transformation

• Model transformation rules are designed manually

• In order to ensure reliability, it is necessary to check the
correctness of the model transformation

Introduction Diagram Predicate Framework Correctness of Model Transformation

Outline

Introduction

Diagram Predicate Framework

Correctness of Model Transformation

Introduction Diagram Predicate Framework Correctness of Model Transformation

Diagram Predicate Framework (DPF)

• A fully diagrammatic specification framework for MDE

• Aims to be a diagrammatic formalism to define and reason
about models and model transformations

Introduction Diagram Predicate Framework Correctness of Model Transformation

Diagram Predicate Framework (DPF)

Activity Message

[irr]

2S

Π
Σ αΣ Proposed vis. Semantic interpretation

[mult(m, n)] 1
a

2 X
f

[m..n]
Y ∀x ∈ X : m ≤ |f(x)| ≤ n,

with 0 ≤ m ≤ n and n ≥ 1

[irreflexive] 1
a

X
f

[irr]

∀x ∈ X : x /∈ f(x)

• Models are formalized as diagrammatic specifications which
consist of an underlying graph structure together with a set of
atomic constraints

Introduction Diagram Predicate Framework Correctness of Model Transformation

Diagram Predicate Framework (DPF)

Element Flow

Activity Message

[irr]

2S

3S
Π

Σ αΣ Proposed vis. Semantic interpretation

[mult(m, n)] 1
a

2 X
f

[m..n]
Y ∀x ∈ X : m ≤ |f(x)| ≤ n,

with 0 ≤ m ≤ n and n ≥ 1

[irreflexive] 1
a

X
f

[irr]

∀x ∈ X : x /∈ f(x)

A modelling language is formalized as a modelling formalism
(Σ2 ⊲ S2, S2, Σ3)

• Specification S2 represents the metamodel of the language

• Signature Σ3 contains predicates which are used to add
constraints to the metamodel S2

• Typed signature Σ2 ⊲ S2 contains predicates which are used
to add constraints to the specification S1 that are specified by
the modelling formalism

Introduction Diagram Predicate Framework Correctness of Model Transformation

Diagram Predicate Framework (DPF)

Constraint-Aware Model Transformation

Joined Modelling Formalism

Θ2 ▷ T2Γ2 := Σ2 ▷ S2 ⊎ Θ2 ▷ T2Σ2 ▷ S2

T2

DT

[1
..
∞

]
C

o
l

Table

J2

DTt

[1
..
∞

]
C

o
l

Table

[bij]

[=]

[1..1][inj]

DTs

A
tt

r

Class

R
e
f

S2

DT

A
tt

r

Class

R
e
f

Θ3Γ3 := Σ3 ⊎ Ξ3 ⊎ Θ3Σ3

Introduction Diagram Predicate Framework Correctness of Model Transformation

Diagram Predicate Framework (DPF)

Constraint-Aware Model Transformation

Model transformation rules

L ⊲ J2 R ⊲ J2

Rule 1 Class to table

1:Class 1:Class 1:Table
1:Col

[pk]
Int:DTt

Rule 2 Attribute to column

1:Class

1:Attr

1:Table
1:Col

[pk]
Int:DTt

1:DTs

1:Class

1:Attr

1:Table
1:Col

[pk]

2:Col

Int:DTt

1:DTs 1:DTt

Introduction Diagram Predicate Framework Correctness of Model Transformation

Outline

Introduction

Diagram Predicate Framework

Correctness of Model Transformation

Introduction Diagram Predicate Framework Correctness of Model Transformation

Correctness of Model Transformation

A match of a rule:

• It exists a graph homomorphism from the left hand side of the
rule to the model

If a match of a rule is found in a model, we say that the rule is
applicable to the model.

A model transformation is correct if:

• For any valid source model, a sequence of applicable rules
which constructs a valid target model can be found

Introduction Diagram Predicate Framework Correctness of Model Transformation

Correctness of Model Transformation

Rule application strategy

• When several rules are applicable at the same time

• When several matches of a rule are found in the model

Introduction Diagram Predicate Framework Correctness of Model Transformation

Which method to use

For correctness of program:

• Testing: Never completely identify all the defects

• Theorem provers: Need a mathematical formalization of the
program and involves human activities

• Model checkers: State explosion problem

Introduction Diagram Predicate Framework Correctness of Model Transformation

Which method to use

Model transformations are automatic

• Run automatic tests of model transformations

• A sequence of applicable rules to constructs a desired target
model

• Feedbacks assisting the designers to correct the rules

Introduction Diagram Predicate Framework Correctness of Model Transformation

Which method to use

• For any determinstic program, each input only have one
execution path

• For a model transformation, several different sequences of
applicable rules may exist

• Model checker can check all the possible sequences

Introduction Diagram Predicate Framework Correctness of Model Transformation

Model Checking

Model checking is an automatic way to verify that a model
satisfies a given specification

• Model is represented as a Kripke structure

• Specification is formalized in temporal logic, CTL or LTL

• E [(¬selection)U (brew)]

Introduction Diagram Predicate Framework Correctness of Model Transformation

Verification Process

Given

• Joint modelling formalism (JMF), including the source
metamodel (SMM) and the target metamodel (TMM)

• Transformation rules (MTRs)

• Source model (SM)

A kripke structure can be constructed through this procedure

Introduction Diagram Predicate Framework Correctness of Model Transformation

Verification Process

• We define a initial state i representing SM

• For each state s ∈ S and for every MTR
r : L ⊲ S2 →֒ R ⊲ S2 we check IsMatch(Model,L ⊲ S2). If
it is true, the rule is applicable

• For each state s ∈ S and for every applicable MTR
r : L ⊲ S2 →֒ R ⊲ S2, we define a new state r(s) ∈ S and a
transition t : s → r(s)

Introduction Diagram Predicate Framework Correctness of Model Transformation

Verification Process

Correctness property:
In the future there is a state where no more rule is applicable and
from this state a valid target model can be derived. In CTL, it is
formalized as

EF!AnyRuleApplicable(Model, MTRs)&&IsInstanceof (getTargetModel(Model), TMM)

Introduction Diagram Predicate Framework Correctness of Model Transformation

Future Work

• Find a suitable way to make rule application terminate

• Find way to implement the approach

• Find way to evaluate the approach
• Efficency of checking
• Number of states handled by the model checker

Introduction Diagram Predicate Framework Correctness of Model Transformation

Thank you!

Questions?

For more information visit: http://dpf.hib.no/

http://dpf.hib.no/

	Introduction
	Diagram Predicate Framework
	Correctness of Model Transformation

