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Model-Driven Engineering (MDE)

• In model-driven engineering, models are
• Primary artefacts
• Used to specify, generate and maintain code
• Manipulated by model transformations

• Advantage
• Productivity is greatly improved
• Consistence between models is assured
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Model Transformation

• Model transformation is automatic
• Platform Independent Model (PIM) → Platform Specific

Model (PSM)
• Model → executable code
• Model refactoring

• Improves the software development productivity and quality
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Model Transformation

• Model transformations:
• Source models → Target models

• Model transformation rules:
• Source metamodel ↔ Target metamodel

• Given a source model and a set of model transformation rules,
we use the following transformation process:

• Find a suitable rule
• Change on the source model according to the rule
• Generate a new model which satisfies the target metamodel
• Repeat the process until there is no suitable rule found
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Correctness of Model Transformation

• Software programs need validation before deployment
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Correctness of Model Transformation

• Model transformations must also be reliable
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Correctness of Model Transformation

• Model transformations must also be reliable
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Correctness of Model Transformation

• Model transformation rules are designed manually

• In order to ensure reliability, it is necessary to check the
correctness of the model transformation
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Diagram Predicate Framework (DPF)

• A fully diagrammatic specification framework for MDE

• Aims to be a diagrammatic formalism to define and reason
about models and model transformations
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Diagram Predicate Framework (DPF)
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• Models are formalized as diagrammatic specifications which
consist of an underlying graph structure together with a set of
atomic constraints
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Diagram Predicate Framework (DPF)

Element Flow
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A modelling language is formalized as a modelling formalism
(Σ2 ⊲ S2, S2, Σ3)

• Specification S2 represents the metamodel of the language

• Signature Σ3 contains predicates which are used to add
constraints to the metamodel S2

• Typed signature Σ2 ⊲ S2 contains predicates which are used
to add constraints to the specification S1 that are specified by
the modelling formalism
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Diagram Predicate Framework (DPF)

Constraint-Aware Model Transformation

Joined Modelling Formalism

Θ2 ▷ T2Γ2 := Σ2 ▷ S2 ⊎ Θ2 ▷ T2Σ2 ▷ S2
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Θ3Γ3 := Σ3 ⊎ Ξ3 ⊎ Θ3Σ3
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Diagram Predicate Framework (DPF)

Constraint-Aware Model Transformation

Model transformation rules

L ⊲ J2 R ⊲ J2

Rule 1 Class to table

1:Class 1:Class 1:Table
1:Col

[pk]
Int:DTt

Rule 2 Attribute to column

1:Class

1:Attr

1:Table
1:Col

[pk]
Int:DTt

1:DTs

1:Class

1:Attr

1:Table
1:Col

[pk]

2:Col

Int:DTt

1:DTs 1:DTt
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Correctness of Model Transformation

A match of a rule:

• It exists a graph homomorphism from the left hand side of the
rule to the model

If a match of a rule is found in a model, we say that the rule is
applicable to the model.

A model transformation is correct if:

• For any valid source model, a sequence of applicable rules
which constructs a valid target model can be found
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Correctness of Model Transformation

Rule application strategy

• When several rules are applicable at the same time

• When several matches of a rule are found in the model
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Which method to use

For correctness of program:

• Testing: Never completely identify all the defects

• Theorem provers: Need a mathematical formalization of the
program and involves human activities

• Model checkers: State explosion problem
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Which method to use

Model transformations are automatic

• Run automatic tests of model transformations

• A sequence of applicable rules to constructs a desired target
model

• Feedbacks assisting the designers to correct the rules
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Which method to use

• For any determinstic program, each input only have one
execution path

• For a model transformation, several different sequences of
applicable rules may exist

• Model checker can check all the possible sequences



Introduction Diagram Predicate Framework Correctness of Model Transformation

Model Checking

Model checking is an automatic way to verify that a model
satisfies a given specification

• Model is represented as a Kripke structure

• Specification is formalized in temporal logic, CTL or LTL

• E [(¬selection)U (brew)]
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Verification Process

Given

• Joint modelling formalism (JMF), including the source
metamodel (SMM) and the target metamodel (TMM)

• Transformation rules (MTRs)

• Source model (SM)

A kripke structure can be constructed through this procedure
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Verification Process

• We define a initial state i representing SM

• For each state s ∈ S and for every MTR
r : L ⊲ S2 →֒ R ⊲ S2 we check IsMatch(Model,L ⊲ S2). If
it is true, the rule is applicable

• For each state s ∈ S and for every applicable MTR
r : L ⊲ S2 →֒ R ⊲ S2, we define a new state r(s) ∈ S and a
transition t : s → r(s)
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Verification Process

Correctness property:
In the future there is a state where no more rule is applicable and
from this state a valid target model can be derived. In CTL, it is
formalized as

EF!AnyRuleApplicable(Model, MTRs)&&IsInstanceof (getTargetModel(Model), TMM)
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Future Work

• Find a suitable way to make rule application terminate

• Find way to implement the approach

• Find way to evaluate the approach
• Efficency of checking
• Number of states handled by the model checker
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Thank you!

Questions?

For more information visit: http://dpf.hib.no/

http://dpf.hib.no/
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